Discover how to track analytics with Supabase from setup to data visualization. Learn project creation, inserting events, querying, and automating your insights.
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
Step 1: Set Up a Supabase Project
To start tracking analytics with Supabase, you first need to set up a Supabase project.
Step 2: Connect to Your Database
Once your project is created, you need to connect to your database to store and retrieve analytics data.
You can use a PostgreSQL client locally or embed the connection information within your application code.
Step 3: Create a Table for Analytics
Now, create a table where analytics data will be stored.
event_name
, timestamp
, user_id
, and extra_data
).Here is an example SQL command to create a basic analytics table:
CREATE TABLE analytics (
id SERIAL PRIMARY KEY,
event\_name VARCHAR(255),
timestamp TIMESTAMP DEFAULT CURRENT\_TIMESTAMP,
user\_id INT,
extra\_data JSONB
);
Step 4: Insert Analytics Data
With the table created, you can now begin inserting analytics data.
For JavaScript integration via Supabase Client, use the following code snippet:
import { createClient } from '@supabase/supabase-js';
const supabase = createClient('https://your-project-url.supabase.co', 'public-anon-key');
async function trackEvent(event_name, user_id, extra\_data = {}) {
let { data, error } = await supabase
.from('analytics')
.insert([
{ event_name, user_id, extra\_data },
]);
if (error) console.error('Error inserting data:', error);
else console.log('Data inserted:', data);
}
// Example usage
trackEvent('page\_view', 1, { page: 'homepage' });
Make sure you replace 'https://your-project-url.supabase.co'
and 'public-anon-key'
with your actual Supabase project details.
Step 5: Query Analytics Data
To analyze the collected analytics data, you can execute SQL queries directly on Supabase or programmatically fetch and process this data.
For example, to get all events:
async function fetchEvents() {
let { data, error } = await supabase
.from('analytics')
.select('\*');
if (error) console.error('Error fetching data:', error);
else console.log('Analytics data:', data);
}
fetchEvents();
Step 6: Visualize Analytics Data
Visualizing your analytics data can provide more insights than raw data.
Step 7: Automate & Monitor
Set up automated data tracking with regular jobs or triggers:
By following these steps, you efficiently track and analyze user interactions through Supabase and gain valuable insights into user behaviors.
When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.