Learn how to seamlessly integrate Lovable with Google Cloud AI Platform. Follow our step-by-step guide to maximize your AI project's potential.

Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
package.json at the root of your Lovable project.
{
"name": "lovable-project",
"version": "1.0.0",
"dependencies": {
"@google-cloud/aiplatform": "^1.0.0" // specify the required version here
}
}
gcpClient.ts inside your project’s source directory (src or similar).
import {PredictionServiceClient} from '@google-cloud/aiplatform';
const client = new PredictionServiceClient({
// Optional: Uncomment and replace with your values if not using default environment credentials
// projectId: 'YOURPROJECTID',
// keyFilename: 'path/to/your-service-account-file.json'
});
export default client;
aiPrediction.ts inside your source folder. This module will include a function to send prediction requests to AI Platform.
import client from './gcpClient';
export async function getPrediction(instance: any): Promise {
// Replace the following constants with your actual Google Cloud project details and endpoint information
const project = process.env.GOOGLECLOUDPROJECT || 'YOURPROJECTID';
const location = 'us-central1'; // Update as required
const endpointId = 'YOURENDPOINTID'; // The endpoint you created in AI Platform
// Construct the endpoint path
const endpoint = projects/${project}/locations/${location}/endpoints/${endpointId};
// Call the predict method from the AI Platform client
const [response] = await client.predict({
endpoint,
instances: [instance]
});
return response;
}
index.ts or the appropriate entry point in your Lovable project), import and use the prediction function.
import { getPrediction } from './aiPrediction';
async function runAIIntegration() {
const instance = {
// Provide your input data here matching your AI model's requirements
input: 'sample input'
};
try {
const prediction = await getPrediction(instance);
console.log('Prediction result:', prediction);
} catch (error) {
console.error('Error during prediction:', error);
}
}
// Call the function to perform the prediction when needed
runAIIntegration();
config.ts inside your source folder and add the following snippet:
export const GCP_CONFIG = {
projectId: 'YOURPROJECTID',
location: 'us-central1', // Update with your region
endpointId: 'YOURENDPOINTID',
// If needed, add keyFilename for service account credentials:
// keyFilename: 'path/to/your-service-account-file.json'
};
gcpClient.ts or aiPrediction.ts instead of hard coding them.
package.json, gcpClient.ts, aiPrediction.ts, and config.ts if used) are saved in their respective locations.When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.