Learn how to seamlessly integrate Lovable with Google Cloud AI Platform. Follow our step-by-step guide to maximize your AI project's potential.
Book a call with an Expert
Starting a new venture? Need to upgrade your web app? RapidDev builds application with your growth in mind.
package.json
at the root of your Lovable project.
{
"name": "lovable-project",
"version": "1.0.0",
"dependencies": {
"@google-cloud/aiplatform": "^1.0.0" // specify the required version here
}
}
gcpClient.ts
inside your project’s source directory (src
or similar).
import {PredictionServiceClient} from '@google-cloud/aiplatform';
const client = new PredictionServiceClient({
// Optional: Uncomment and replace with your values if not using default environment credentials
// projectId: 'YOURPROJECTID',
// keyFilename: 'path/to/your-service-account-file.json'
});
export default client;
aiPrediction.ts
inside your source folder. This module will include a function to send prediction requests to AI Platform.
import client from './gcpClient';
export async function getPrediction(instance: any): Promise {
// Replace the following constants with your actual Google Cloud project details and endpoint information
const project = process.env.GOOGLECLOUDPROJECT || 'YOURPROJECTID';
const location = 'us-central1'; // Update as required
const endpointId = 'YOURENDPOINTID'; // The endpoint you created in AI Platform
// Construct the endpoint path
const endpoint = projects/${project}/locations/${location}/endpoints/${endpointId};
// Call the predict method from the AI Platform client
const [response] = await client.predict({
endpoint,
instances: [instance]
});
return response;
}
index.ts
or the appropriate entry point in your Lovable project), import and use the prediction function.
import { getPrediction } from './aiPrediction';
async function runAIIntegration() {
const instance = {
// Provide your input data here matching your AI model's requirements
input: 'sample input'
};
try {
const prediction = await getPrediction(instance);
console.log('Prediction result:', prediction);
} catch (error) {
console.error('Error during prediction:', error);
}
}
// Call the function to perform the prediction when needed
runAIIntegration();
config.ts
inside your source folder and add the following snippet:
export const GCP_CONFIG = {
projectId: 'YOURPROJECTID',
location: 'us-central1', // Update with your region
endpointId: 'YOURENDPOINTID',
// If needed, add keyFilename for service account credentials:
// keyFilename: 'path/to/your-service-account-file.json'
};
gcpClient.ts
or aiPrediction.ts
instead of hard coding them.
package.json
, gcpClient.ts
, aiPrediction.ts
, and config.ts
if used) are saved in their respective locations.When it comes to serving you, we sweat the little things. That’s why our work makes a big impact.